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The model considered is@d=2 layered random Ising system on a square lattice with a nearest-neighbor
interaction. It is assumed that all the vertical couplings are equal and take the positivelyvailnde the
horizontal couplings are quenched random variables that are equal in the same row but can take the two
possible values andJ—K in different rows. The exact solution is obtained in the limit case « for any
distribution of the horizontal couplings. The model that corresponds to this limit can be seen as an ordinary
Ising system where the spins of some rows, chosen at random, are frozen in an antiferromagnetic order. No
phase transition is found if the horizontal couplings are independent random variables, while for correlated
disorder one finds a low temperature phase with some glassy propEsti€$63-651X97)50309-6

PACS numbd(s): 05.50+q, 02.50-r

Ising spin glasses have been solved exactly in their meacan be negative. Different distributions of the horizontal cou-
field version[1,2], while as far as | know no exact solutions plings correspond to different models of the class; in the
are available at finite dimensionality=2. Indeed, in the Simplest case, thg; are independent random variables and
presence of disorder evends=1 system with a magnetic take the valugl with probability 1-p andJ—K with prob-
field is a very complicated problefi8] and compact exact 2bility p.

; ; : i Layered Ising models of this type had been first consid-
solutions can be found only in special cafék This is frus-
trating, since it is not always clear if the qualitative results Ofered by McCoy and W5,6] for the nonfrustrated case,

a mean field approximation are shared by the finite dimen\-NhICh is used for studying the effect of guenched random-

. del. In thi | far f ing thi b ness on the ferromagnetic-paramagnetic transition. These au-
slon model. In this paper [ am far from answering IS prob-y, ¢ gealt with the determinant that occurs in the Pfaffian
lem; nevertheless, | exactly solve a classdef2 layered

. . " approach, and while they do not provide an explicit exact
random Ising systems that in some conditions have a lowq|ytion of the problem they are able to show that the free

temperature phase. The nature of this nonferromagnetic l0Wnergy has an infinitely differentiable singularity at the tran-
temperature phase is still unclear to me, but there are somgtion. Layered models with frustration have been studied by
indications that it shares some of the properties of a glassghankar and Murthy7]; not only their topic but their ap-
phase. proach is similar to this work, since they deal with the row to
The models | consider are defined as follows: the interrow transfer matrices. They do not find out an exact solution;
action is effective only between nearest neighbors on &evertheless, they map the problem into a collectiord of
square lattice; all the vertical couplings are equal, while the=1 random field Ising systems from which they can extract
horizontal couplings are quenched variables that are equal ia lot of information. In particular, they provide evidence for
the same row but can take different values in different rowsthe existence of a low temperature phase.
the vertical couplings take the positive valde while the Let me now state the problem more precisely. Assuming
horizontal couplings); can take the two possible valuds thatN=LM is the number of spind, is the number of rows,
andJ—K, with K—oo. These models have frustration since andM the number of columns, the Hamiltonian can be writ-
the product of the signs of the coupling around a plaquettéen as
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are random and equal the identity whey=0 and the up
Hy=—2 (Joi i1+ 31010141, (1) projector 7" =(1+ 73)/2 when 7;=1. The matrixT(q,T'),

N on the contrary, is constant and reads
where theJ; are the horizontal couplings whose values only _ N .
depend on the row and not on the columj. One can write T(q.I')=exp{~T'rgjexp(2l* (73 cosq+ 7, sinq)}
J;=J— 7;K, where the quenched variableg can take the xexp[— I 73}, )
values 0 and 1 according to a given distribution. In the inde-
pendent casey; =0 with probability 1-p and ;=1 with where 7, and 73 are Pauli matrices andl'™*=
probability p. The partition function is — 3 log(tanh).

The trace of a product of random matrices is easily acces-
sible via computer simulation but it cannot be, in general,
exactly computed. In the present case, nevertheless, follow-
ing a similar method as if4], it is possible to find out the
compact analytical result. Consider a given realization of the
quenched variableg; and look at the product of matrices in
Eq. (5). SinceT;(q,I')=E;T(qg,I') that product reduces to a
where the constant ternx;;»;K has been added to the product of matriced(q,I") and up projectors™. The first
Hamiltonian in order to avoid divergences in the—x and second* will be separated by, matricesT(q,I'), the
limit. After having definedl’=Jg and performed the limit second and third by, matricesT(q,I'), and so on. Thé,
K—o one obtains are random variables that can take the values 1,2,... . whose

distribution can be easily found out once the distribution of
ZNZE H the %; is given (I,—1 is the number of unfrozen rows be-
ot j tween two frozen ongsThe order numben goes from 1 to
_1+0-i,j0-i,j+1 )
——— .

ZN:{E} ex ; BlIoijoii1j+tdojoiji1

_7]iK(1+Ui,jUi,j+l)]}a ¥

expll'o; joi 1+ 0011}

ng=L/I; in fact, one must haveEElelnzL so that
5 (3) =" 1,/ng=l=L/n;. With the help of these considerations

n=1"n
one can rewrite Eq5) as

X1

The terms in parentheses equal 1 whep=0 and

(1—0j,0i,;+1)/2 when ;=1. Notice that in this second -

case the antiferromagnetic order between neighbor spins on v(q,I)=lim +log nﬂl [T(a.1)'"]1

the row is imposed; in fact, if; ; ando; ;1 have the same Lo

sign they give a vanishing contribution to the partition func- L

tion. Itis now clear that Eq.3) defines a class of Ising model =lim = >, log[T(q,I)'n]44, (8)
with both vertical and horizontal couplings equal cand Lo L oA=1

with the spins of some rows frozen in an antiferromagnetic

order. The frustration comes out from the fact that the tenwhere[T(q,I')'n]; is the upper left entry off (q,I')'"n. If

dency to the ferromagnetic alignment due to the positiveP(l) is the probability that two successive rows of infinitely

couplings is in competition with the tendency to the antifer-negative couplings are separatedibyl rows of finite posi-

romagnetic alignment induced by the frozen spins on theive couplings, thed==,",IP(l) and

unfrozen ones. A similar problem, where the spins are ran-

domly frozen in a random direction, has been solvedlin 1 |

=1 in [4] and studied ird=2 at zero temperature {i8]. V(q*r):; T_P(I)IOQ[T(Q’F) Jua- ©)
The advantage of considering layered disorder is that one

can apply a standard diagonalization metti@®], and re-  |n order to find the explicit form for Eq9) it is convenient

duce the problem to the evaluation of the trace of products ofg write

random matrices. Following the same step$798] one eas-

ily finds the free energy T(q,I')=exp{e(73 cOSp+ 71 SiN P)}, (10
f=—%log(2 sinh I)—ZL Jﬁy(q,l“)dq, (g here
™ Jo cosit 2r
where coshe= ST cosq (11
L and

1
v(q,I")= lim T log Tr .1:[1 T(q,T"). (5)

L—oo

(cosh 2")(cosq—sinh ")

cos ¢= (sir? g+ (coslf 2I')(cosq—sinh ')%)T%’
(12)

The 2x2 matricesT;(q,I') can be written as the product
Ti(q,)=ET(q,I') where the

1 0

0 1_ Yi

Using Eq.(10) we directly obtain

Ei= (6)

[T(q,T)']1;=coskl €)+cos ¢ sinhle), (13
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FIG. 1. Specific hea€ as a function of the temperatufe The FIG. 3. Temperature derivativ@C/d T of the specific heat for
dotted line corresponds to the Ising modp0), the full line to  the P(1)=a/I*> model.
p=0.1, and the dashed line =0.2.
. J5+1
Finally, So=JpA(1— p)Iog( 5 ) . (16)

J _ J < w
f=- or log(2 sinh 2°) — Zwrﬁ; P(I)fo log(costile) Sp is not vanishing forp#0,1 showing an exponential de-
generation of the ground state due to the frustration of the

+cos ¢ sinh(l€))dq, (14) model.
Since the transition disappears fpr=0 the role ofp
wheree and ¢ are given in Eqs(11) and(12). reminds one of a magnetic field, which also suppresses the

The probabilityP (1) for the simplest choice of indepen- transition. The analog of the spontaneous magnetization is

dent 7; is P(1)=p(1—p)' " andI=1/p. In this case one o©btained in the limitp—0 as
can prove that the system has no phase transition, except for

p=0, where it trivially reduces to the ordinary Ising model. of J - 14cos ¢
In Fig. 1 the specific hed® is shown in correspondence with f’EL—} =" 5T og T) dg. (17
different values ofp; one can notice that the logarithmic Plo-o o Jo

divergence is smoothed, showing the absence of transition.
Nevertheless, the model is frustrated and its zero temperaturg, g quantity is continuous while its derivatigd’ /d T is not

properties are not completely trivit_:ll. One can compute the; shown in Fig. 2, where one can see a logarithmic diver-
T=0 energyf, and entropys, and finds gence aff, (the Onsager critical temperatiire

The circumstance that a phase transition can be found
only at p=0 suggests a more careful look at the model
around this value. If one chooses- a/L one has a vanish-
ing p in the thermodynamic limit and the free energy is the
same as that of the standard Ising model. Nevertheless, one
has a random finite number of frozen rows. This number is
Poisson distributed with intensity and it is different for
different realizations of the disordémo self-averaging The
distance between two given frozen rows is also a random
number of order oL and it also varies from one realization
to another. The final result is that the frozen rows separate a
random number of regions of random size of orblewhose
magnetization af <T. is =m(T) independently one from
the othe[m(T) is the Onsager spontaneous magnetization at
temperatureT]. As a consequence of this fact, the whole
system can be in all the states corresponding to all the pos-
s sible combinations of magnetization of each region. In con-
clusion, one has the same free energy of a standard Ising
system but a number of pure states each of them correspond-

FIG. 2. Temperature derivatiwf'/dT of f'=[af/dp],-o asa ing to a different local magnetization. The situation is com-
function of T,. pletely analogous to that studied [ih0] for a dilutedd=1

fo=—2J(1—p)?, (15

-~
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model at zero temperature. Following the same linglL6f it P()=p(1—p)'? of the independent case. By substituting
is easy to compute the overlap probability; in particular, forthis expression in Eq.14) one can easily compute the free

large o one has energy and look at the eventual divergences. In spite of the
fact that the free energy is now different from that of the
1 9° standard Ising model, one still finds a phase transition at the
P(a)=——=— exp{ - z} ' (18 Onsager temperature. Nevertheless, this phase transition does
V2t not correspond to a divergence in the specific heat, but in its

_ 2 : L derivatived C/d T, which is plotted in Fig. 3. | have not been
wheret=m(T)"/«. Equation(18) implies that the overlap able to quantitatively characterize the low phase temperature

between two different pure states vanishes in the Iimi'With an order parameter. In this phase, in fact, while the

a—c; nevertheless, it should be noticed that the self-gtaneous magnetization vanishes, both the overlap and a
overlapgma,=m(T), being independent oa, remains finite.

parameter connected with the antiferromagnetic order seems

To summarize, forp#0 there is no phase transition,  gifer from zero. | hope that some light on this point wil
while for p=a/L one has a glassylike phase that comes oUtyme out from future research.

from an artificial construction that maintains the same free

energy of the Ising model. It is straightforward, at this point, | acknowledge the financial support of the INFN, National
to look at an intermediate situation, where the number olLaboratories of Gran Sasg8pecific Initiative group FI1j
frozen rows is of order oL but they can be much more and the hospitality of the Institut Superieure Polytechnique
separated than in the independent case. This task can be ale Madagascar. | thank Andrea Crisanti, Umberto Marini
complished with the choic®(l)=a/l® (a is the normaliza- Bettolo Marconi, and Julien Raboanary for useful discus-
tion constant which replaces the exponential distribution sions and suggestions.
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