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The model considered is ad52 layered random Ising system on a square lattice with a nearest-neighbor
interaction. It is assumed that all the vertical couplings are equal and take the positive valueJ, while the
horizontal couplings are quenched random variables that are equal in the same row but can take the two
possible valuesJ andJ2K in different rows. The exact solution is obtained in the limit caseK→` for any
distribution of the horizontal couplings. The model that corresponds to this limit can be seen as an ordinary
Ising system where the spins of some rows, chosen at random, are frozen in an antiferromagnetic order. No
phase transition is found if the horizontal couplings are independent random variables, while for correlated
disorder one finds a low temperature phase with some glassy properties.@S1063-651X~97!50309-6#

PACS number~s!: 05.50.1q, 02.50.2r

RAPID COMMUNICATIONS

The Rapid Communications section is intended for the accelerated publication of important new results. Since manuscripts s
to this section are given priority treatment both in the editorial office and in production, authors should explain in their submittal
why the work justifies this special handling. A Rapid Communication should be no longer than 4 printed pages and must be acco
by an abstract. Page proofs are sent to authors.
ea
s

t

o
en
b

lo
lo
om
s

er

th
al
ws

ce
et

u-
the
nd

id-
,
m-
au-

an
act
ree
n-
by

to
on;
f
act
or

ing

it-
Ising spin glasses have been solved exactly in their m
field version@1,2#, while as far as I know no exact solution
are available at finite dimensionalityd>2. Indeed, in the
presence of disorder even ad51 system with a magnetic
field is a very complicated problem@3# and compact exac
solutions can be found only in special cases@4#. This is frus-
trating, since it is not always clear if the qualitative results
a mean field approximation are shared by the finite dim
sion model. In this paper I am far from answering this pro
lem; nevertheless, I exactly solve a class ofd52 layered
random Ising systems that in some conditions have a
temperature phase. The nature of this nonferromagnetic
temperature phase is still unclear to me, but there are s
indications that it shares some of the properties of a gla
phase.

The models I consider are defined as follows: the int
action is effective only between nearest neighbors on
square lattice; all the vertical couplings are equal, while
horizontal couplings are quenched variables that are equ
the same row but can take different values in different ro
the vertical couplings take the positive valueJ, while the
horizontal couplingsJi can take the two possible valuesJ
andJ2K, with K→`. These models have frustration sin
the product of the signs of the coupling around a plaqu
561063-651X/97/56~3!/2339~4!/$10.00
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can be negative. Different distributions of the horizontal co
plings correspond to different models of the class; in
simplest case, theJi are independent random variables a
take the valueJ with probability 12p andJ2K with prob-
ability p.

Layered Ising models of this type had been first cons
ered by McCoy and Wu@5,6# for the nonfrustrated case
which is used for studying the effect of quenched rando
ness on the ferromagnetic-paramagnetic transition. These
thors dealt with the determinant that occurs in the Pfaffi
approach, and while they do not provide an explicit ex
solution of the problem they are able to show that the f
energy has an infinitely differentiable singularity at the tra
sition. Layered models with frustration have been studied
Shankar and Murthy@7#; not only their topic but their ap-
proach is similar to this work, since they deal with the row
row transfer matrices. They do not find out an exact soluti
nevertheless, they map the problem into a collection od
51 random field Ising systems from which they can extr
a lot of information. In particular, they provide evidence f
the existence of a low temperature phase.

Let me now state the problem more precisely. Assum
thatN5LM is the number of spins,L is the number of rows,
andM the number of columns, the Hamiltonian can be wr
ten as
R2339 © 1997 The American Physical Society
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HN52(
i j

~Js i , js i 11,j1Jis i , js i , j 11!, ~1!

where theJi are the horizontal couplings whose values on
depend on the rowi and not on the columnj . One can write
Ji5J2h iK, where the quenched variablesh i can take the
values 0 and 1 according to a given distribution. In the in
pendent caseh i50 with probability 12p and h i51 with
probability p. The partition function is

ZN5(
$s%

expH(
i j

b@Js i , js i 11,j1Js i , js i , j 11

2h iK~11s i , js i , j 11!#J , ~2!

where the constant term( i j h iK has been added to th
Hamiltonian in order to avoid divergences in theK→`
limit. After having definedG[Jb and performed the limit
K→` one obtains

ZN5(
$s%

)
i j

Fexp$Gs i , js i 11,j1Gs i , js i , j 11%

3S 12
11s i , js i , j 11

2
h i D G . ~3!

The terms in parentheses equal 1 whenh i50 and
(12s i , js i , j 11)/2 when h i51. Notice that in this second
case the antiferromagnetic order between neighbor spin
the row is imposed; in fact, ifs i , j ands i , j 11 have the same
sign they give a vanishing contribution to the partition fun
tion. It is now clear that Eq.~3! defines a class of Ising mode
with both vertical and horizontal couplings equal toJ and
with the spins of some rows frozen in an antiferromagne
order. The frustration comes out from the fact that the t
dency to the ferromagnetic alignment due to the posit
couplings is in competition with the tendency to the antif
romagnetic alignment induced by the frozen spins on
unfrozen ones. A similar problem, where the spins are r
domly frozen in a random direction, has been solved ind
51 in @4# and studied ind52 at zero temperature in@8#.

The advantage of considering layered disorder is that
can apply a standard diagonalization method@7,9#, and re-
duce the problem to the evaluation of the trace of product
random matrices. Following the same steps of@7,9# one eas-
ily finds the free energy

f 52
J

2G
log~2 sinh 2G!2

J

2pG E
0

p

g~q,G!dq, ~4!

where

g~q,G!5 lim
L→`

1

L
log Tr )

i 51

L

Ti~q,G!. ~5!

The 232 matricesTi(q,G) can be written as the produc
Ti(q,G)5EiT(q,G) where the

Ei5S 1
0

0
12h i

D ~6!
-
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are random and equal the identity whenh i50 and the up
projector t15(11t3)/2 when h i51. The matrixT(q,G),
on the contrary, is constant and reads

T~q,G!5exp$2Gt3%exp$2G* ~t3 cosq1t1 sin q!%

3exp$2Gt3%, ~7!

where t1 and t3 are Pauli matrices andG* [
2 1

2 log(tanhG).
The trace of a product of random matrices is easily acc

sible via computer simulation but it cannot be, in gener
exactly computed. In the present case, nevertheless, fol
ing a similar method as in@4#, it is possible to find out the
compact analytical result. Consider a given realization of
quenched variablesh i and look at the product of matrices i
Eq. ~5!. SinceTi(q,G)5EiT(q,G) that product reduces to
product of matricesT(q,G) and up projectorst1. The first
and secondt1 will be separated byl 1 matricesT(q,G), the
second and third byl 2 matricesT(q,G), and so on. Thel n
are random variables that can take the values 1,2,... . wh
distribution can be easily found out once the distribution
the h i is given ~l n21 is the number of unfrozen rows be
tween two frozen ones!. The order numbern goes from 1 to
nf5L/ l̄ ; in fact, one must have(n51

nf l n5L so that

(n51
nf l n /nf[ l̄ 5L/nf . With the help of these consideration

one can rewrite Eq.~5! as

g~q,G!5 lim
L→`

1

L
log )

n51

L/ l̄

@T~q,G! l n#11

5 lim
L→`

1

L (
n51

L/ l̄

log@T~q,G! l n#11, ~8!

where @T(q,G) l n#11 is the upper left entry ofT(q,G) l n. If
P( l ) is the probability that two successive rows of infinite
negative couplings are separated byl 21 rows of finite posi-
tive couplings, thenl̄[( l 51

` lP( l ) and

g~q,G!5(
l 51

`
1

l̄
P~ l !log@T~q,G! l #11. ~9!

In order to find the explicit form for Eq.~9! it is convenient
to write

T~q,G!5exp$e~t3 cosf1t1 sin f!%, ~10!

where

coshe5
cosh2 2G

sinh 2G
2cosq ~11!

and

cosf5
~cosh 2G!~cosq2sinh 2G!

„sin2 q1~cosh2 2G!~cosq2sinh 2G!2
…

1/2.

~12!

Using Eq.~10! we directly obtain

@T~q,G! l #115cosh~ l e!1cosf sinh~ l e!, ~13!
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Finally,

f 52
J

2G
log~2 sinh 2G!2

J

2pG l̄
(
l 51

`

P~ l !E
0

p

log„cosh~ l e!

1cosf sinh~ l e!…dq, ~14!

wheree andf are given in Eqs.~11! and ~12!.
The probabilityP( l ) for the simplest choice of indepen

dent h i is P( l )5p(12p) l 21 and l̄ 51/p. In this case one
can prove that the system has no phase transition, excep
p50, where it trivially reduces to the ordinary Ising mode
In Fig. 1 the specific heatC is shown in correspondence wit
different values ofp; one can notice that the logarithm
divergence is smoothed, showing the absence of transi
Nevertheless, the model is frustrated and its zero tempera
properties are not completely trivial. One can compute
T50 energyf 0 and entropys0 and finds

f 0522J~12p!2, ~15!

FIG. 1. Specific heatC as a function of the temperatureT. The
dotted line corresponds to the Ising model (p50), the full line to
p50.1, and the dashed line top50.2.

FIG. 2. Temperature derivatived f8/dT of f 8[@] f /]p#p50 as a
function of Ts.
for

n.
re
e

s05Jp2~12p!logSA511

2 D . ~16!

s0 is not vanishing forpÞ0,1 showing an exponential de
generation of the ground state due to the frustration of
model.

Since the transition disappears forpÞ0 the role of p
reminds one of a magnetic field, which also suppresses
transition. The analog of the spontaneous magnetizatio
obtained in the limitp→0 as

f 8[F ] f

]pG
p50

52
J

2pG E
0

p

logS 11cosf

2 Ddq. ~17!

This quantity is continuous while its derivatived f8/dT is not
as shown in Fig. 2, where one can see a logarithmic div
gence atTc ~the Onsager critical temperature!.

The circumstance that a phase transition can be fo
only at p50 suggests a more careful look at the mod
around this value. If one choosesp5a/L one has a vanish
ing p in the thermodynamic limit and the free energy is t
same as that of the standard Ising model. Nevertheless,
has a random finite number of frozen rows. This numbe
Poisson distributed with intensitya and it is different for
different realizations of the disorder~no self-averaging!. The
distance between two given frozen rows is also a rand
number of order ofL and it also varies from one realizatio
to another. The final result is that the frozen rows separa
random number of regions of random size of orderN whose
magnetization atT<Tc is 6m(T) independently one from
the other@m(T) is the Onsager spontaneous magnetization
temperatureT#. As a consequence of this fact, the who
system can be in all the states corresponding to all the p
sible combinations of magnetization of each region. In co
clusion, one has the same free energy of a standard I
system but a number of pure states each of them corresp
ing to a different local magnetization. The situation is co
pletely analogous to that studied in@10# for a dilutedd51

FIG. 3. Temperature derivativedC/dT of the specific heat for
the P( l )5a/ l 3 model.
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model at zero temperature. Following the same line of@10# it
is easy to compute the overlap probability; in particular,
largea one has

P~q!.
1

A2pt
expH 2

q2

2t J , ~18!

where t5m(T)2/a. Equation~18! implies that the overlap
between two different pure states vanishes in the li
a→`; nevertheless, it should be noticed that the se
overlapqmax5m(T)2, being independent ona, remains finite.

To summarize, forpÞ0 there is no phase transition
while for p5a/L one has a glassylike phase that comes
from an artificial construction that maintains the same f
energy of the Ising model. It is straightforward, at this poi
to look at an intermediate situation, where the number
frozen rows is of order ofL but they can be much mor
separated than in the independent case. This task can b
complished with the choiceP( l )5a/ l 3 ~a is the normaliza-
tion constant! which replaces the exponential distributio
r

it
-

t
e
,
f

ac-

P( l )5p(12p) l 21 of the independent case. By substitutin
this expression in Eq.~14! one can easily compute the fre
energy and look at the eventual divergences. In spite of
fact that the free energy is now different from that of t
standard Ising model, one still finds a phase transition at
Onsager temperature. Nevertheless, this phase transition
not correspond to a divergence in the specific heat, but in
derivativedC/dT, which is plotted in Fig. 3. I have not bee
able to quantitatively characterize the low phase tempera
with an order parameter. In this phase, in fact, while t
spontaneous magnetization vanishes, both the overlap a
parameter connected with the antiferromagnetic order se
to differ from zero. I hope that some light on this point w
come out from future research.
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